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Abstract

An analytically exact method is proposed to extract the signal intensity and the noise variance simultaneously from noisy magnitude
MR signals. This method relies on a fixed point formula of signal-to-noise ratio (SNR) and a correction factor. The correction factor,
which is a function of SNR, establishes a fundamental link between the variance of the magnitude MR signal and the variance of the
underlying Gaussian noise in the two quadrature channels. A more general but very similar method is developed for parallel signal
acquisitions with multiple receiver coils. In the context of MR imaging, the proposed method can be carried out on a pixel-by-pixel basis
if the mean and the standard deviation of the magnitude signal are available.
Published by Elsevier Inc.
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1. Introduction

The basic formulation of noise in magnitude MR images
and its related numerical computation was first investigat-
ed by Henkelman [1], who provided a numerical look-up
table for his correction scheme. Pure Johnson noise in mag-
nitude images can be described by the Rayleigh distribu-
tion. The Rayleigh distribution, a special case of the
Rician distribution, was used by Edelstein et al. [2] in the
context of signal-to-noise (SNR) calibration for NMR
imaging systems. Later, a more general framework of noise
analysis and detectability of signals in MR images using the
Rician distribution was investigated by Bernstein et al. [3]
whose results relied on the first two moments of the Rician
distribution. These moments of Rician distribution, which
will be very important to the present study, were derived by
Rice in his seminal work on mathematical analysis of ran-
dom noise [4]. Besides the mathematical development of
noise in MRI, the physical principle of noise in MRI is also
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of great relevance. This aspect of noise in MRI was inves-
tigated by Macovski [5].

Several correction schemes have been proposed to ex-
tract or estimate the signal intensity from the magnitude
MR signal [6–11]. These schemes provide different
approaches to estimating the signal intensity. An unbiased
estimator of the signal intensity that depends on the second
moment of the magnitude signal was developed simulta-
neously by McGibney and Smith [6] and Miller and Joseph
[7]. However, these methods require prior knowledge of the
noise variance. Gudbjartsson and Patz [8] reviewed the Ri-
cian distribution of noise in MR images and provided
another correction scheme to extract the signal intensity.
This correction scheme is similar to that of McGibney
and Smith [6] and Miller and Joseph [7], differing from
the other two methods only by a small numerical factor
and one additional absolute value operation. The method
of Gudbjartsson and Patz [8] can be shown to be a special
case of our proposed correction scheme at high SNR.

Signal intensity estimation is intricately tied to the noise
variance estimation. Simultaneous estimation of the noise
variance and the signal intensity from MR magnitude
images based on the maximum-likelihood framework has
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been investigated by Sijbers et al. [9–11]. However, this ap-
proach requires nonlinear optimization of a 2D function
on each pixel. Karlsen et al. [12] proposed a similar frame-
work for T1 and perfusion measurements.

In this study, we propose a fresh approach for estimat-
ing the signal intensity and the noise variance simulta-
neously from the magnitude MR signals. This correction
scheme is to analytically exact in the sense that the correc-
tion scheme is derived from two mathematical identities.
The first identity is the correction factor that relates the
variance of the magnitude signal and the variance of the
underlying Gaussian noise in the two quadrature channels.
The second identity, a fixed point formula of SNR, con-
nects the first two moments of the Gaussian distribution
and those of the Rician distribution, which, in effect, estab-
lishes a one-to-one correspondence between the signal-to-
noise ratio, SNR � g

rg
, and the magnitude signal-to-noise

ratio, hMirM
, where g, rg, ÆMæ, and rM are the signal intensity,

the standard deviation (SD) of noise, the mean of the mag-
nitude MR signal and the SD of the magnitude MR signal,
respectively.

In general, fixed point formulae are elegant and can be
used to better understand the problem of interest both
mathematically and conceptually. But, each fixed point for-
mula is different and, therefore, requires further investiga-
tion on its numerical stability. In this study, we
discovered that the proposed fixed point formula of SNR
may not be optimal for numerical computation at low
SNR due to slow convergence. Fortunately, a simple mod-
ification, moving from fixed point searching to root find-
ing, can help increase the rate of convergence by at least
fivefold at low SNR. This modification is based on the
Newton’s method of root finding together with simple
but important improvements.

We first develop the proposed method for a single
receiver coil by demonstrating the connection between
the Rician distribution and the formulation provided by
Henkelman [1]. Using the first two moments of the Ri-
cian distribution, we establish the correction factor. This
correction factor underlies much of the present work and
will be given due attention in this note. From this rela-
tion, the correction scheme can be constructed based on
the fixed point formula of SNR. The proposed correction
scheme for a single receiver coil is then generalized to
multiple receiver coils suitable for parallel MR signal
acquisitions.

2. Methods

2.1. Review on formulation of MR noise problem

According to Henkelman [1], the joint probability densi-
ty of the noise from two quadrature channels can be ex-
pressed as

p1ðnr; niÞ ¼
1

2pr2
g

exp � n2
r þ n2

i

2r2
g

 !
; ð1Þ
where nr and ni are the noise from the real and complex
MR signals with assumed Gaussian distribution of mean
zero and standard deviation rg. The mean of the magnitude
MR signal is

hMip1
¼
Z 1

�1

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþ nrÞ2 þ n2

i

q
p1ðnr; niÞdnr dni; ð2Þ

where g is the signal intensity and M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþ nrÞ2 þ n2

i

q
[1].

The signal intensity is assumed real through a rotation of
the quadrature detector [1]. Note that the notation adopted
here is different from that of Henkelman. By two simple
changes of variables, a linear shift (n = g + nr), and a polar
coordinate transformation, Eq. (2) can be written as

hMip1
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Z 1

�1

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þn2
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r2
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pr

dM ¼hMipr
; ð4Þ

where pr is the Rician probability density and I0 is the zer-
oth order Modified Bessel function [4,3,6,14].
2.2. The correction factor n

According to Rice [4], the first and second moments of
M, hMipr

and hM2ipr
, can be expressed analytically as fol-

lows [4,11–13,15]:

hMipr
¼ 1

2r2
g

exp � g2

4r2
g

 ! ffiffiffi
p
2

r
rg ðg2 þ 2r2

gÞI0

g2

4r2
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 !
þ g2I1

g2

4r2
g

 !" # !

ð5Þ

and

hM2ipr
¼ 2r2

g þ g2; ð6Þ

where I1 is the first order modified Bessel function. Based
on Eqs. (5) and (6), the variance of the magnitude signal
M, r2

r � hM2ipr
� hMi2pr

, can be expressed simply as

r2
r ¼ nðhÞr2

g ð7Þ

by factoring out r2
g and by the substitution of

h � g
rg
� SNR. The correction factor n is defined as

nðhÞ ¼ 2þ h2 � p
8

� exp � h2

2

� �
2þ h2
� �

I0

h2

4

� �
þ h2I1

h2

4

� �� �2

.

ð8Þ

As mentioned in Section 1, the relation between the vari-
ance of the magnitude signal and the variance of the
Gaussian noise, which is shown in Eq. (7), is very impor-
tant to the present work for it underlies most of the results
established later. Note that the correction factor n (h) is an
increasing function of SNR ” h, Fig. 1.



Fig. 1. The correction factor n as a function of SNR for different values of
N (number of combined channels).
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2.3. Fixed point formula of SNR

In this section, we construct a fixed point formula of
SNR from the relation established in Eq. (7). Due to exper-
imental constraints, we will assume that the mean and var-
iance of the magnitude signal can measured and that the
unknowns are g and rg.

We begin by equating Eq. (7) with the definition of the
variance of the magnitude signal by writing out the second
moment of M

2r2
g þ g2 � hMi2pr

¼ nðhÞr2
g. ð9Þ

By factoring out r2
g on both sides of the equation and by

substituting g2=r2
g with h2, we arrive at

2þ h2 � hMi2pr
=r2

g ¼ nðhÞ. ð10Þ

If we replace the remaining r2
g term in Eq. (10) by

r2
g ¼ r2

r=nðhÞ, we arrive at the fixed point formula of SNR:
Fig. 2. The estimated SNR as a function of magnitude SNR, hMrM
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðhÞ 1þ

hMi2pr

r2
r

" #
� 2

vuut . ð11Þ

This fixed point formula of SNR has a unique solution
for all values of

hMipr

rr
such that

hMipr

rr
P

ffiffiffiffiffiffi
p

4�p

p
¼ 1:9130; this

lower bound is the limit at h = 0. Given hMipr
and rr, we

can determine the values of SNR and of the correction fac-
tor n (h) simultaneously by mapping an initial guess of h,
h0, iteratively using the right-hand side formula of Eq.

(11). For example, define gðhÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðhÞ 1þ hMi

2
pr

r2
r

h i
� 2

r
, this

iterative map will always converge in the sense of
|gi(h0) � hi�1| 6 e for some nonnegative integer i and a fixed
positive number e, i.e., e = 1.0 · 10�8; gi denotes composi-
tion of function, i.e., gmðhÞ � gð. . . gðg|fflfflfflfflffl{zfflfflfflfflffl}

m terms

ðhÞÞÞ. Although this

iterative map is simple to understand and implement, it is
not optimal due to slow convergence at low SNR. We have
implemented an algorithm based on the Newton’s method
of root finding to speed up convergence. The algorithm is
shown in Appendix A. In this algorithm, we have made a
few simple but important improvements:

(1) we use a known lower bound in our selection of the
initial guess;

(2) we provide an analytical expression for the derivative
of the iterative function.

Once the correction factor is determined, we can esti-
mate the signal intensity g from the following expressions:

g2 ¼ hMi2pr
þ ðnðhÞ � 2Þr2

g; ð12Þ

or

g2 ¼ hMi2pr
þ ð1� 2=nðhÞÞr2

r . ð13Þ
N i
N

, for different values of N (number of combined channels).



Table 1
Some statistical properties of the exact correction scheme for various SNR
levels

g/rg Ægæ/rg rÆgæ/rg

0. 1.49 · 10�8 (1.03) 1.0 (0.35)
0.5 0.5 (1.10) 1.0 (0.42)
1. 1. (1.30) 1.0 (0.59)
1.5 1.5 (1.61) 1.0 (0.79)
2. 2. (2.03) 1.0 (0.96)
2.5 2.5 (2.50) 1.0 (1.04)
3. 3. (3.00) 1.0 (1.07)

The numerical values in parentheses are taken from the approximate
scheme of (5).
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Fig. 2 shows the estimated signal intensity g in units of rg

(or SNR) as a function of
hMipr

rr
. Comparing Eq. (12) with

the approximate correction scheme proposed by Gudbj-

artsson and Patz [8], g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhMi2pr

� r2
gj

q
, one can see that

the correction scheme of Gudbjartsson et al. is the limiting
case of the present approach at high SNR because n fi 1
for large h. Therefore, this scheme overestimates the true
signal intensity at low SNR because n(h) is an increasing
function of SNR.

It should be noted that as long as hMipr
and r2

r can be
computed reliably with sufficient precision, the signal inten-
sity can be estimated at low SNR (Table 1, Fig. 2). The re-
sults taken from Gudbjartsson and Patz [8] on the mean of
the estimated signal intensity for various SNR are com-
pared with the proposed scheme in Table 1. It shows that
the proposed scheme better estimates the signal intensity
than the scheme by Gudbjartsson and Patz [8].
2.4. Extension to parallel signal acquisitions

In this section, we will generalize the fixed point formula
of SNR and the correction scheme to parallel signal acqui-
sitions using multiple receiver coils in a phased array sys-
tem where the sum-of-squares algorithm is used [16]. The
general formulation of the noise problem in multiple chan-
nels is well known in communication theory [17] and was
introduced to MR imaging by Constantinides et al. [13].

Let the composite magnitude signal be

MN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

j¼1½M2
jr þM2

ji�
q

where N denotes the number of

receiver coils, and Mjr = gjr + njr and Mji = gji + nji denote
the observed real and imaginary signals reconstructed from
the jth receiver coil, respectively. Further, the signal inten-
sities contributing to the real and the imaginary signals of
the jth receiver coil are denoted, respectively, by gjr and
gji. The noise from both the real and imaginary parts of
the magnitude signal for all j, njr and nji, are assumed to
have the same standard deviation rg. The goal of the cor-
rection scheme is to obtain the combined signal intensity

gN �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

j¼1½g2
jr þ g2

ji�
q

.

The probability density of MN, also known as the non-
central Chi distribution, can be written as [13,17]:
pðMN Þ ¼
gN

r2
g

MN

gN

� �N

Exp �ðg
2
N þM2

N Þ
2r2

g

 !
IN�1

MNgN

r2
g

 !
.

ð14Þ

The first and the second moments of MN are [13,15]

hMN i ¼
ffiffiffi
p
2

r
ð2N � 1Þ!!

2N�1ðN � 1Þ! 1F 1 �
1

2
;N ;� g2

N

2r2
g

 !
rg; ð15Þ

and

hM2
N i ¼ 2Nr2

g þ g2
N ; ð16Þ

respectively, where 1F1 is the confluent hypergeometric
function and the double factorial is defined as follows:
n!! = n (n � 2)(n � 4) · � � � [18,19].

Let bN ¼
ffiffi
p
2

p ð2N�1Þ!!
2N�1ðN�1Þ! and SNR � h � gN

rg
, the correction

factor n is now a function of both the SNR and the number
of receiver coils. This correction factor n (h,N) can be de-
rived from the variance of MN, r2

MN
:

r2
MN
� hM2

N i � hMN i2 ¼ nðh;NÞr2
g; ð17Þ

where

nðh;NÞ ¼ 2N þ h2 � b2
N 1F 1 �

1

2
;N ;� h2

2

� �� 	2

. ð18Þ

The correction factor for different numbers of receiver coils
is plotted in Fig. 1.

Based on Eqs. (17) and (18) again, the fixed point for-
mula of SNR can be established as follows:

hM2
N i � hMNi2 ¼ nðh;NÞr2

g

() 2Nr2
g þ g2

N � hMN i2 ¼ nðh;NÞr2
g

() 2N þ h2 � hMN i2

r2
g

¼ nðh;NÞ

() 2N þ h2 ¼ nðh;NÞ 1þ hMN i2

r2
MN

 !

() h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðh;NÞ 1þ hMN i2

r2
MN

 !
� 2N

vuut . ð19Þ

When N = 1, Eq. (19) reduces to Eq. (11). This fixed
point formula has a unique solution for all
hMN i
rMN

P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N
nð0;NÞ � 1

q
. This lower bound is derived by setting

Eq. (19) to zero, Fig. 2. Please refer to Appendix A for
Newton’s method of root finding together with specific
implementation details. Once the SNR is determined, the
composite signal intensity can be obtained by solving the
following equation:

g2
N ¼ hMNi2 þ 1� 2N

nðh;NÞ

� �
r2

MN
. ð20Þ
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3. Discussion and conclusion

We have provided an analytically exact method for
simultaneous estimation of the signal intensity and the
noise variance from noisy magnitude MR signals. The pro-
posed method depends on the fixed point formula of SNR
and the correction factor n. In the case of N = 1, the qual-
itative behavior and limitation of other approximate cor-
rection schemes were described in light of the proposed
scheme. We have also provided a specific implementation
of a root-finding algorithm to speed up convergence.

It should be emphasized here that the method of averag-
ing used in hMipr

or ÆMNæ is an ensemble average over the
noise fluctuations, which involves repeated measurements.
This important issue was correctly pointed out by Ander-
sen [20]. In the context of MR imaging, if an ensemble of
M is available, then, in principle, we can compute SNR
estimate on a pixel-by-pixel basis. If the assumption is
not valid then spatial (or ROI-based) averaging may be
used. But, ROI-based averaging should be used with great
caution because it is only applicable to objects having
homogeneous signals within the region of interest.

Finally, this correction scheme will be useful to applica-
tions in MR spectroscopic signal processing and MR image
processingaswellasMRsystemcalibrationwheremagnitude
signals are processed and analyzed [2,21–27]. Specifically, the
proposed method provides a foundation for quantitative
comparisonofparallel imagingsystemswithdifferentreceiver
coils. This is a topic of interest that is under investigation.
Fig. 3. The number of iterations needed to reach convergence for both the
Newton’s method and the fixed point method as a function of magnitude
SNR, hMN i

rMN
, for N = 1. This plot shows that the fixed point method, which

uses the iterative function g shown in Appendix A, may not be appropriate
for finding the fixed point at low magnitude SNR. With a simple
modification, the Newton’s method of root finding can be constructed to
overcome this issue of slow convergence. The plot shows that the
Newton’s method is uniformly better than the fixed point method.
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Appendix A

In this appendix, we will provide a specific algorithm for
finding the fixed point of SNR based on the Newton’s
method of root finding.

Define r � hMN i
rMN

and assume that r and N are known. Let

h ¼ gðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðh;NÞ 1þ hMN i2

r2
MN

� �
� 2N

s
and

f (h) = g (h) � h = 0. The goal of this algorithm is to find
the root of f. The Newton’s method of finding the root
of f (h) begins with the following iterations:

hnþ1 ¼ hn �
f ðhnÞ
f 0ðhnÞ

for n P 0; ðA:1Þ

where f 0 denotes the derivative of f with respect to h. The
analytical expression of f 0 can be obtained quite easily
due to the following relation 1F 01ða; b; ch

mÞ ¼
acmhm�1

b 1F 1ðaþ 1; bþ 1; chmÞ [15,18,19]. With some algebraic
manipulation, Eq. (A.1) can be written as
hnþ1 ¼ hn

� gðhnÞ gðhnÞ � hnð Þ
hnð1þ r2Þ 1� bðNÞ2

2N 1F 1 � 1
2
;N ;� h2

2


 �
1F 1 þ 1

2
;N þ 1;� h2

2


 �h i
� gðhnÞ

.

ðA:2Þ

For simplicity, define

kðhn;N ; rÞ � hn

� gðhnÞ gðhnÞ � hnð Þ
hnð1þ r2Þ 1� bðNÞ2

2N 1F 1 � 1
2
;N ;� h2

2


 �
1F 1 þ 1

2
;N þ 1;� h2

2


 �h i
� gðhnÞ

ðA:3Þ

and

LowerBound ðNÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N
nð0;NÞ � 1

s
. ðA:4Þ

The algorithm for finding the root of f is shown below:
Newton’s method of root finding:

RootFinder (r, N) { r and N are inputs
if (r 6 LowerBound (N)) return 0.0;
max = 500; maximum iteration
e = 1.0 · 10�8; tolerance

t0 = r � LowerBound (N); initial guess

t1 = k(t0,N,r);
while(jt1 � t0j > e){

t0 = t1;
t1 = k(t0,N,r);
max = max � 1;
if (max < 0) break;

}
return t1; return the computed result

}
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In fact, the iterative function k in the algorithm can be
replaced by the iterative function g for carrying out the fixed
point estimation but the number of iterations needed to
reach convergence will be much higher at low SNR. Fig. 3
shows the comparison between the Newton’s method,
which uses the iterative function k, and the fixed point for-
mula, which uses the iterative function g. This comparison
is carried out at N = 1 with the same numerical tolerance
as shown in the algorithm. Fig. 3 shows that the Newton’s
method is uniformly better than the fixed point method.
References

[1] R.M. Henkelman, Measurement of signal intensities in the presence
of noise in MR images, Med. Phys. 12 (2) (1985) 232–233, Erratum in
13 (1986) 544.

[2] W.A. Edelstein, P.A. Bottomley, L.M. Pfeifer, A signal-to-noise
calibration procedure for NMR imaging systems, Med. Phys. 11 (2)
(1984) 180–185.

[3] M.A. Bernstein, D.M. Thomasson, W.H. Perman, Improved detect-
ability in low signal-to-noise ratio magnetic resonance images by
means of a phase-corrected real reconstruction, Med. Phys. 15 (5)
(1989) 813–817.

[4] S.O. Rice, Mathematical Analysis of Random Noise. Bell System
Technical Journal, 1944, vols. 23 and 24. (Reprinted by Wax N.
‘‘Selected Papers on Noise and Stochastic Processes’’, Dover Publi-
cations 1954).

[5] A. Macovski, Noise in MRI, Magn. Reson. Med. 36 (1996) 494–497.
[6] G. McGibney, M.R. Smith, An unbiased signal-to-noise ratio measure

for magnitude resonance images, Med. Phys. 20 (4) (1993) 1077–1078.
[7] A.J. Miller, P.M. Joseph, The use of power images to perform

quantitative analysis on low SNR MR images, Magn. Reson. Imag.
11 (1993) 1051–1056.

[8] H. Gudbjartsson, S. Patz, The Rician distribution of noisy MRI data,
Magn. Reson. Med. 34 (1995) 910–914, Erratum in Magn. Reson.
Med. 36(2) (1996) 332–333.

[9] J. Sijbers, A.J. Den Dekker, P. Scheunders, D. Van Dyck, Maximum-
likelihood estimation of Rician distribution parameters, IEEE Trans.
Med. Imag. 17 (3) (1998) 357–361.

[10] J. Sijbers, A.J. Den Dekker, J.V. Van Audekerke, M. Verhoye, D.
Van Dyck, Estimation of the noise in magnitude MR images, Magn.
Reson. Imag. 16 (1) (1998) 87–90.
[11] J. Sijbers, A.J. Dekker, Maximum likelihood estimation of signal
amplitude and noise variance from MR data, Magn. Reson. Med. 51
(2004) 586–594.

[12] O.T. Karlsen, R. Verhagen, M.M.J. Bovée, Parameter estimation
from Rician-distributed data sets using a maximum likelihood
estimator: application to T1 and perfusion measurements, Magn.
Reson. Med. 41 (1999) 614–623.

[13] C.D. Constantinides, E. Atalar, E.R. McVeigh, Signal-to-noise
measurements in magnitude images from NMR phased arrays,
Magn. Reson. Med. 38 (1997) 852–857, Erratum in Magn. Reson.
Med. 52 (2004) 219.

[14] A. Papoulis, Probability, Random Variables, and Stochastic Process-
es, McGraw-Hill, New York, 1965.

[15] S. Wolfram, The Mathematica Book, fifth ed., Wolfram Media,
2003.

[16] P.B. Roemer, W.A. Edelstein, C.E. Hayes, S.P. Souza, O.M. Mueller,
The NMR phased array, Magn. Reson. Med. 16 (1990) 192–225.

[17] A.D. Whalen, Detection of Signals in Noise, Academic Press, New
York, 1971.

[18] G. Arfken, Mathematical Methods for Physicists, second ed.,
Academic Press, New York, 1985.

[19] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions,
Dover Publications, New York, 1974.

[20] A.H. Andersen, On the Rician distribution of noisy MRI data, Mag.
Reson. Med. 36 (2) (1996) 331–332.

[21] L.C. Chang, G.K. Rohde, C. Pierpaoli, An automatic method for
estimating noise-induced signal variance in magnitude-reconstructed
magnitude resonance images, Prog. Biomed. Opt. Imaging 6 (No. 24)
(2005) 1136–1142.

[22] P.T. Callaghan, D. MacGowan, K.J. Packer, F.O. Zelaya, J. Magn.
Reson. 90 (1990) 177–182.

[23] D. LeBihan, Diffusion NMR imaging, Magn. Reson. Q. 7 (1991)
1–30.

[24] P.J. Basser, J. Mattiello, D. LeBihan, MR diffusion tensor and
imaging, Biophys. J. 66 (1994) 259–267.

[25] K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P. Boesiger,
SENSE: sentivity encoding for fast MRI, Magn. Reson. Med. 42
(1999) 952–962.

[26] W.E. Kyriakos, L.P. Panych, D.F. Kacher, C.F. Westin, S.M. Bao,
R.V. Mulkern, F.A. Jolesz, Sensitivity profiles from an array of coils
for encoding and reconstruction in parallel (SPACE RIP), Magn.
Reson. Med. 44 (2000) 301–308.

[27] P. Kellman, E.R. McVeigh, Image reconstruction in SNR units: a
general method for SNR measurement, Magn. Reson. Med. 54 (2005)
439–447.


	Analytically exact correction scheme for signal extraction from noisy magnitude MR signals
	Introduction
	Methods
	Review on formulation of MR noise problem
	The correction factor  xi 
	Fixed point formula of SNR
	Extension to parallel signal acquisitions

	Discussion and conclusion
	Acknowledgments
	Appendix A
	References


